Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Infect Dis ; 2023 Mar 27.
Article in English | MEDLINE | ID: covidwho-2321605

ABSTRACT

BACKGROUND: Testing and contact tracing (CT) can interrupt transmission chains SARS-CoV-2. Whole genome sequencing (WGS) can potentially strengthen these investigations and provide insights on transmission. METHODS: We included all laboratory-confirmed COVID-19 cases diagnosed between June 4 to July 26, 2021, in a Swiss canton. We defined CT clusters based on epidemiological links reported in the CT data and genomic clusters as sequences with no single nucleotide polymorphism (SNP) differences between any two pairs of sequences being compared. We assessed the agreement between CT clusters and genomic clusters. RESULTS: Of 359 COVID-19 cases, 213 were sequenced. Overall, agreement between CT and genomic clusters was low (Kappa coefficient=0.13). Out of 24 CT clusters with at least two sequenced samples, 9 (37.5%) were also linked based on genomic sequencing but in four of these, WGS found additional cases in other CT clusters. Household was most often reported source of infection (101, 28.1%) and home addresses coincided well with CT clusters: In 44 out of 54 CT clusters containing at least two cases (81.5%), all cases of the cluster had the same home address. However, only a quarter of household transmission was confirmed by WGS (6 out of 26 genomic clusters, 23.1%). A sensitivity analysis using ≤1 SNP differences to define genomic clusters resulted in similar results. CONCLUSIONS: WGS data supplemented epidemiological CT data, supported the detection of potential additional clusters missed by CT, and identified misclassified transmissions and sources of infection. Household transmission was overestimated by CT.

2.
J Clin Microbiol ; 60(1): e0169821, 2022 01 19.
Article in English | MEDLINE | ID: covidwho-1511413

ABSTRACT

This first pilot trial on external quality assessment (EQA) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) whole-genome sequencing, initiated by the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Genomic and Molecular Diagnostics (ESGMD) and the Swiss Society for Microbiology (SSM), aims to build a framework between laboratories in order to improve pathogen surveillance sequencing. Ten samples with various viral loads were sent out to 15 clinical laboratories that had free choice of sequencing methods and bioinformatic analyses. The key aspects on which the individual centers were compared were the identification of (i) single nucleotide polymorphisms (SNPs) and indels, (ii) Pango lineages, and (iii) clusters between samples. The participating laboratories used a wide array of methods and analysis pipelines. Most were able to generate whole genomes for all samples. Genomes were sequenced to various depths (up to a 100-fold difference across centers). There was a very good consensus regarding the majority of reporting criteria, but there were a few discrepancies in lineage and cluster assignments. Additionally, there were inconsistencies in variant calling. The main reasons for discrepancies were missing data, bioinformatic choices, and interpretation of data. The pilot EQA was overall a success. It was able to show the high quality of participating laboratories and provide valuable feedback in cases where problems occurred, thereby improving the sequencing setup of laboratories. A larger follow-up EQA should, however, improve on defining the variables and format of the report. Additionally, contamination and/or minority variants should be a further aspect of assessment.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Laboratories , Laboratories, Clinical , Pilot Projects
3.
J Glob Antimicrob Resist ; 27: 267-272, 2021 12.
Article in English | MEDLINE | ID: covidwho-1492262

ABSTRACT

OBJECTIVES: Patients hospitalised abroad can become colonised with multidrug-resistant bacteria and import them to their home countries. In this study, we characterised an OXA-484 carbapenemase-producing Escherichia coli strain from a Swiss patient infected by SARS-CoV-2 and repatriated from India. METHODS: At admission to Switzerland (April 2021), the patient undertook a nasopharyngeal swab to search for SARS-CoV-2 and a rectal swab to detect multidrug-resistant bacteria. Both SARS-CoV-2 and E. coli isolates were whole-genome sequenced and analysed for phylogenetic relatedness. RESULTS: The patient was infected with the SARS-CoV-2 B.1.617.2 lineage (VOC Delta), a lineage that began to be reported across Switzerland at that time. He was also colonised with a sequence type 410 (ST410) E. coli strain (L3452210II) producing OXA-484, a single amino acid variant of OXA-181. The blaOXA-484 gene was carried by a 51.5 kb IncX3 plasmid identical to those described in blaOXA-181-harbouring ST410 E. coli strains. Core genome analysis showed that L3452210II was identical (ΔSNV ≤23) to two ST410 OXA-484 producers recently reported in Qatar and Germany, but differed from other ST410 OXA-181 producers reported worldwide. CONCLUSION: The patient was infected by an emerging SARS-CoV-2 variant and also imported an E. coli producing OXA-484, an OXA-48-like carbapenemase not yet reported in Switzerland. The genetic background of L3452210II indicated that blaOXA-484 shared the same plasmid as blaOXA-181, but its bacterial host differed from most of the pandemic OXA-181-producing ST410 strains reported previously. This case description underlines that the COVID-19 crisis can contribute to the worldwide spread of emerging carbapenemase producers.


Subject(s)
COVID-19 , Escherichia coli Infections , Escherichia coli Proteins , Anti-Bacterial Agents , Bacterial Proteins , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Humans , Male , Microbial Sensitivity Tests , Phylogeny , SARS-CoV-2 , beta-Lactamases
5.
Microorganisms ; 9(4)2021 Mar 25.
Article in English | MEDLINE | ID: covidwho-1154452

ABSTRACT

The rapid spread of the SARS-CoV-2 lineages B.1.1.7 (N501Y.V1) throughout the UK, B.1.351 (N501Y.V2) in South Africa, and P.1 (B.1.1.28.1; N501Y.V3) in Brazil has led to the definition of variants of concern (VoCs) and recommendations for lineage specific surveillance. In Switzerland, during the last weeks of December 2020, we established a nationwide screening protocol across multiple laboratories, focusing first on epidemiological and microbiological definitions. In January 2021, we validated and implemented an N501Y-specific PCR to rapidly screen for VoCs, which are then confirmed using amplicon sequencing or whole genome sequencing (WGS). A total of 13,387 VoCs have been identified since the detection of the first Swiss case in October 2020, with 4194 being B.1.1.7, 172 B.1.351, and 7 P.1. The remaining 9014 cases of VoCs have been described without further lineage specification. Overall, all diagnostic centers reported a rapid increase of the percentage of detected VOCs, with a range of 6 to 46% between 25 to 31 of January 2021 increasing towards 41 to 82% between 22 to 28 of February. A total of 739 N501Y positive genomes were analysed and show a broad range of introduction events to Switzerland. In this paper, we describe the nationwide coordination and implementation process across laboratories, public health institutions, and researchers, the first results of our N501Y-specific variant screening, and the phylogenetic analysis of all available WGS data in Switzerland, that together identified the early introduction events and subsequent community spreading of the VoCs.

6.
Viruses ; 12(12)2020 12 06.
Article in English | MEDLINE | ID: covidwho-967147

ABSTRACT

The International Virus Bioinformatics Meeting 2020 was originally planned to take place in Bern, Switzerland, in March 2020. However, the COVID-19 pandemic put a spoke in the wheel of almost all conferences to be held in 2020. After moving the conference to 8-9 October 2020, we got hit by the second wave and finally decided at short notice to go fully online. On the other hand, the pandemic has made us even more aware of the importance of accelerating research in viral bioinformatics. Advances in bioinformatics have led to improved approaches to investigate viral infections and outbreaks. The International Virus Bioinformatics Meeting 2020 has attracted approximately 120 experts in virology and bioinformatics from all over the world to join the two-day virtual meeting. Despite concerns being raised that virtual meetings lack possibilities for face-to-face discussion, the participants from this small community created a highly interactive scientific environment, engaging in lively and inspiring discussions and suggesting new research directions and questions. The meeting featured five invited and twelve contributed talks, on the four main topics: (1) proteome and RNAome of RNA viruses, (2) viral metagenomics and ecology, (3) virus evolution and classification and (4) viral infections and immunology. Further, the meeting featured 20 oral poster presentations, all of which focused on specific areas of virus bioinformatics. This report summarizes the main research findings and highlights presented at the meeting.


Subject(s)
Computational Biology , RNA Viruses/genetics , Virology , COVID-19 , Congresses as Topic , Evolution, Molecular , Genome, Viral , Humans , Metagenomics , RNA Viruses/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL